Journal of Gastrointestinal Infections

Register      Login

VOLUME 11 , ISSUE 1 ( January-December, 2021 ) > List of Articles

ORIGINAL RESEARCH

Does Over-colonization of Klebsiella pneumoniae in the Gut Cause Obesity?

Gopal Nath, Shweta Singh, Rajesh Kumar

Keywords : Bacteriophage therapy, Charles Foster rats, Klebsiella pneumoniae, Obesity

Citation Information : Nath G, Singh S, Kumar R. Does Over-colonization of Klebsiella pneumoniae in the Gut Cause Obesity?. J Gastrointest Infect 2021; 11 (1):3-8.

DOI: 10.5005/jp-journals-10068-3048

License: CC BY-NC 4.0

Published Online: 18-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background and objectives: Gut microbes have been implicated in human weight gain and involve a few species of the Enterobacteriaceae family such as Klebsiella pneumoniae. We have tried to explore the effect of early colonization of the K. pneumoniae and subsequent eradication through bacteriophage therapy in rat pups on weight gain and loss. Materials and methods: Three pairs of rats selected for mating were grouped separately. Group I having five pups were kept on a sterile diet. Five pups each belonging to group II and III were fed with K. pneumoniae. At the end of 10th week, the pups belonging to the group III were fed with K. pneumoniae-specific phages for 8 weeks. At the end of 30th week, group III were again fed with the bacterium, while group II received bacteriophage therapy for the next 8 weeks. The weight of each of the pups was noted every Monday of the week till the completion of the study. Results: There was significantly higher weight gain (p <0.001) in the rats colonized by the bacterium (50% higher) than those without the colonization by K. pneumoniae by the end of the seventh week. When the bacterium was eradicated using a specific bacteriophage cocktail orally, the mean weight decreased and became almost similar to that of the control rats in about 12 weeks. Conclusion: The bacterial species K. pneumoniae, which is a saprophyte with voracious metabolic activities, may lead to more harvesting of energy from the food and in turn lead to obesity.


HTML PDF Share
  1. Luhar S, Timæus IM, Jones R, et al. Forecasting the prevalence of overweight and obesity in India to 2040. PLoS One 2020;15(2):e0229438. DOI: 10.1371/journal.pone.0229438.
  2. Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol 2010;316(2):104–108. DOI: 10.1016/j.mce.2009.07.00.
  3. Kushner RF, Ryan DH. Assessment and lifestyle management of patients with obesity: clinical recommendations from systematic reviews. JAMA 2014;312(9):943–952. DOI:10.1001/jama.2014.10432.
  4. Alamuddin NZ, Bakizada Z, Wadden TA. Management of obesity. J Clin Oncol 2016;34(35):4295–4305. DOI: 10.1016/S0140-6736(16)00271-3.
  5. Burgess E, Hassmén P, Welvaert M, et al. Behavioural treatment strategies improve adherence to lifestyle intervention programmes in adults with obesity: a systematic review and meta-analysis. Clin Obes 2017;7(2):105–114. DOI: 10.1111/cob.12180.
  6. Müller TD, Clemmensen C, Finan B, et al. Anti-obesity therapy: from rainbow pills to polyagonists. Lancet Infect Dis 2011;11:963–969. DOI: 10.1124/pr.117.014803. PMID: 30087160.
  7. Lai KY, Sarkar C, Ni MY, et al. Exposure to light at night (LAN) and risk of obesity: a systematic review and meta-analysis of observational studies. Environ Res 2020;187:109637. DOI: 10.1016/j.envres.2020.109637.
  8. Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev 2017;2017:3831972. DOI: 10.1155/2017/3831972.
  9. Jha AR, Davenport ER, Gautam Y, et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol 2018;16(11):e2005396. DOI: 10.1371/journal.pbio.2005396.
  10. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285): 59–65. DOI: 10.1038/nature08821.
  11. Del Fiol FS, Balcão VM, Barberato-Fillho S, et al. Obesity: a new adverse effect of antibiotics? Front Pharmacol 2018;9:1408. DOI: 10.3389/fphar.2018.01408. PMID: 30559670; PMCID: PMC6287021.
  12. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 2002;99(24):15451–15455. DOI: 10.1073/pnas.202604299.
  13. Vandeputte D, Kathagen G, D'Hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017;551(7681):507–511. DOI: 10.1038/nature24460.
  14. Park JS, Seo JH, Youn HS. Gut microbiota and clinical disease: obesity and non-alcoholic fatty liver disease. Pediatr Gastroenterol Hepatol Nutr 2013;16(1):22–27. DOI: 10.5223/pghn.2013.16.1.22.
  15. Bajzer M, Seeley RJ. Obesity and gut flora. Nature 2006;444(7122):1009–1010. DOI: 10.1038/4441009a.
  16. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341(6150):1241214. DOI: 10.1126/science.1241214.
  17. Dhurandhar NV. A framework for identification of infections that contribute to human obesity. Lancet Infect Dis 2011;11(12):963–969. DOI: 10.1016/S1473-3099(11)70274-2.
  18. Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathol 2013;5:10. DOI: 10.1186/1757-4749-5-10.
  19. Casazza K, Brown A, Astrup A, et al. Weighing the evidence of common beliefs in obesity research. Crit Rev Food Sci Nutr 2015;55(14):2014–2053. DOI: 10.1080/10408398.2014.922044.
  20. Voss JD, Dhurandhar NV. Viral infections and obesity. Curr Obes Rep 2017;6(1):28–37. DOI: 10.3390/biom9110726.
  21. Hegde V, Dhurandhar NV. Microbes and obesity–interrelationship between infection, adipose tissue and the immune system. Clin Microbiol Infect 2013;19(4):314–320. DOI: 10.1111/1469-0691.12157.
  22. Yuan J, Chen C, Cui J. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab 2019;30(4):675–688. DOI: 10.1016/j.cmet.2019.08.018.
  23. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ-free mice. Multidisc J Microbial Ecol 2013;7(4):880–884. DOI: 10.1038/ismej.2012.153.
  24. Rastelli M, Cani PD, Knauf C. The gut microbiome influences host endocrine functions. End Rev 2019;40(5):1271–1284. DOI: 10.1210/er.2018-00280.
  25. Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab 2016;5(9):743–752. DOI: 10.1016/j.molmet.2016.05.011.
  26. Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 2016;7:11960. DOI: 10.1038/ncomms11960.
  27. Sherk A, Thomas G, Churchill S, et al. Does drinking within low-risk guidelines prevent harm? Implications for high-income countries using the international model of alcohol harms and policies. J Stud Alcohol Drugs 2020;81(3):352–361. PMID: 32527387.
  28. Mattes RD, Bormann L. Effects of (-)-hydroxycitric acid on appetitive variables. Physiol Behav 2000;71(1-2):87–94. DOI: 10.1016/s0031-9384(00)00321-8.
  29. Hayamizu K, Ishii Y, Kaneko I, et al. Effects of Garcinia cambogia (Hydroxycitric Acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. Curr Therap Res 2003;64(8): 551–567. DOI: 10.1016/j.curtheres.2003.08.006.
  30. Preuss HG, Bagchi D, Bagchi M, et al. Efficacy of a novel, natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX, niacin-bound chromium and Gymnema sylvestre extract in weight management in human volunteers: a pilot study. Nutr Res 2004;24(1):45–58. DOI: 10.1016/j.nutres.2003.09.007.
  31. Downs BW, Bagchi M, Subbaraju GV, et al. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid. Mut Res 2005;579 (1–2):149–162. DOI: 10.1016/j.mrfmmm.2005.02.021.
  32. Robinson JA, Fersht AR, Gani D. Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond Biol Sci 1991;332(1263):107–114. DOI: 10.1098/rstb.1991.0038.
  33. Meyer M, Dimroth P, Bott M. Catabolite repression of the citrate fermentation genes in Klebsiella pneumoniae: evidence for the involvement of the cyclic AMP receptor protein. J Bacteriol 2001;183(18):5248–5256. DOI: 10.1128/JB.183.18.5248-5256.2001.
  34. Banerjee M. Kinetics of ethanolic fermentation of d-xylose by Klebsiella pneumoniae and its mutants. Appl Environ Microbiol 1989;55(5):1169–1177. DOI: 10.1128/aem.55.5.1169-1177.1989.
  35. Keskitalo A, Munukka E, Toivonen R, et al. Enterobacter cloacae administration induces hepatic damage and subcutaneous fat accumulation in high-fat diet-fed mice. PLoS One 2018;13(5):e0198262. DOI: 10.1371/journal.pone.0198262.
  36. Kolodziejczyk AA, Zheng D, Elinav E. Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol 2019;17(12):742–753. DOI: 10.1038/s41579-019-0256-8.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.