Journal of Gastrointestinal Infections

Register      Login

VOLUME 11 , ISSUE 1 ( January-December, 2021 ) > List of Articles

REVIEW ARTICLE

Virulence Factors Associated with Clostridiodes difficile: An Overview

Chetana Vaishnavi

Keywords : Binary toxin, Clostridiodes difficile infection, Flagella, Spores, Surface layer proteins, Toxin A, Toxin B, Virulence factors

Citation Information : Vaishnavi C. Virulence Factors Associated with Clostridiodes difficile: An Overview. J Gastrointest Infect 2021; 11 (1):24-29.

DOI: 10.5005/jp-journals-10068-3047

License: CC BY-NC 4.0

Published Online: 18-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Clostridiodes difficile is a health threat mainly acquired via the feco-oral route and colonizes the human gut. There is a wide range of clinical presentation of C. difficile infection (CDI). C. difficile can be accountable for 15–25% of antibiotic-related diarrhea and up to 100% of pseudo-membranous colitis. Clinically important C. difficile are evolving and increasingly being reported globally. The pathogenesis of C. difficile is associated with many established and potential virulence factors. They include toxins, surface layer proteins, cell wall proteins, flagella, fimbriae, spores, etc. The main virulent factors of CDI are toxin A and toxin B, both of which share a high structural and functional resemblance between them. Both these toxins are responsible for neutrophil infiltration marked by mucosal insult and colitis which is a significant feature of CDI. These toxins also influence the cytoskeletal features, despite the difference in activity potency. A third toxin, produced by some C. difficile strains, contains components of both toxin A and toxin B and is referred to as the binary toxin. The role of this toxin in CDI virulence is not clear. Besides the above described virulence features there are other probable factors that could be involved in C. difficile colonization. They are flagella, surface layer protein, production of tissue degradative exoenzymes, and sporulation. In this overview, the virulence factors associated with C. difficile shall be discussed to highlight their potential role in the disease.


HTML PDF Share
  1. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 2005;353(23): 2442–2449. DOI: 10.1056/NEJMoa051639.
  2. Vaishnavi C. Clinical spectrum & pathogenesis of Clostridium difficile associated diseases. Indian J Med Res 2010;131(4):487–499. PMID: 20424299.
  3. Limbago BM, Long CM, Thompson AD, et al. Clostridium difficile strains from community-associated infections. J Clin Microbiol 2009;47(9):3004–3007. DOI: 10.1128/JCM.00964-09.
  4. Bartlett JG. Clinical practice. Antibiotic-associated diarrhea. N Engl J Med 2002;346(5):334–339. DOI: 10.1056/NEJMcp011603.
  5. Vaishnavi C. Clostridium difficile associated disease. In: Infections of the Gastrointestinal System. Vaishnavi C, editor. Publishers Jaypee Brothers Medical Publishers: New Delhi; 2013. p. 87–108.
  6. Brazier JS. The diagnosis of Clostridium difficile-associated disease. J Antimicrob Chemother 1998;41 Suppl C:29–40. DOI: 10.1093/jac/41.suppl_3.29.
  7. Vaishnavi C, Kochhar R, Bhasin D, et al. Simultaneous assays for Clostridium difficile and faecal lactoferrin in ulcerative colitis. Trop Gastroenterol 2003;24(1):13–16. PMID: 12974208.
  8. Vaishnavi C, Gupta PK, Sharma M, et al. Pancreatic disease patients are at higher risk for Clostridium difficile infection compared to those with other co-morbidities. Gut Pathog 2019;11:17. DOI: 10.1186/s13099-019-0300-2.
  9. Pothoulakis C. Pathogenesis of Clostridium difficile-associated diarrhea. Eur J Gastroenterol Hepatol 1996;8(11):1041–1047. DOI: 10.1097/00042737-199611000-00003.
  10. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med 1994;330(4):257–262. DOI: 10.1056/NEJM199401273300406.
  11. von Eichel-Streiber C, Boquet P, Sauerborn M, et al. Large clostridial cytotoxins–a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 1996;4(10):375–382. DOI: 10.1016/0966-842X(96)10061-5.
  12. Popoff MR, Geny, B. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 2011;60(Pt 8): 1057–1069. DOI: 10.1099/jmm.0.029314-0.
  13. Zhu D, Lamabadu HM, Patabendige W, et al. Cwl0971, a novel peptidoglycan hydrolase, plays pleiotropic roles in Clostridioides difficile R20291. Environ Microbiol 2021;23(9):5222–5238. DOI: 10.1111/1462-2920.15529.
  14. Lima AAM, Lyerly DM, Wilkins TD, et al. Effects of Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and on cultured cells in vitro. Infect Immun 1988;56(3):582–588. DOI: 10.1128/iai.56.3.582-588.1988.
  15. Hecht G, Pothoulakis C, LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988;82(5):1516–1524. DOI: 10.1172/JCI113760.
  16. Castagliuolo I, Keats AC, Wang CC, et al. Substance P receptor expression in intestinal epithelium in Clostridium difficile toxin A enteritis in rats. Am J Physiol 1998;275(1):G68–G75. DOI: 10.1152/ajpgi.1998.275.1.G68.
  17. Katyal R, Vaishnavi C, Singh K. Faecal excretion of brush border membrane enzymes in patients with Clostridium difficile diarrhea. Ind J Med Microb 2002;20(3):178–182. PMID: 17657066.
  18. Fekety R, Shah AB. Diagnosis and treatment of Clostridium difficile colitis. Am J Gastroenterol 1993;629(1):71–75. PMID: 8416409.
  19. Lyerly DM, Saum KE, MacDonald DK, et al. Effect of Clostridium difficile toxins given intragastrically to animals. Infect Immun 1985;47(2): 349–352. DOI: 10.1128/iai.47.2.349-352.1985.
  20. Siffert JC, Baldacini O, Kuhry JG, et al. Effects of Clostridium difficile toxin B on human monocytes and macrophages: possible relationship with cytoskeletal rearrangement. Infect Immun 1993;61(3):1082–1090. DOI: 10.1128/iai.61.3.1082-1090.1993.
  21. Altaie SS, Meyer P, Dryja D. Comparison of two commercially available enzyme immunoassays for detection of Clostridium difficile in stool specimens. J Clin Microbiol 1994;32(1):51–53. DOI: 10.1128/jcm.32.1.51-53.1994.
  22. Hausding M, Witteck A, Rodriguez-Pascual F, et al. Inhibition of small G proteins of the rho family by statins or Clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 2000;131(3):553–561. DOI: 10.1038/sj.bjp.0703607.
  23. Nusrat A, von Eichel-Streiber C, Turner JR, et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 2001;69(3):1329–1336. DOI: 10.1128/IAI.69.3.1329-1336.2001.
  24. von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, et al. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 1992;233(1–2):260–268. DOI: 10.1007/BF00587587.
  25. Barroso LA, Moncrief JS, Lyerly DM, et al. Mutagenesis of the Clostridium difficile toxin B gene and effect on cytotoxic activity. Microb Pathog 1994;16(4):297–303. DOI: 10.1006/mpat.1994.1030.
  26. Albesa-Jove D, Bertrand T, Carpenter EP, et al. Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS. J Mol Biol 2010;396:1260–1270. DOI: 10.1016/j.jmb.2010.01.012.
  27. Hammond GA, Lyerly DM, Johnson JL. Transcriptional analysis of the toxigenic element of Clostridium difficile. Microb Pathog 1997;22(3):143–154. DOI: 10.1006/mpat.1996.0100.
  28. Rupnik M. How to detect Clostridium difficile variant strains in a routine laboratory. Clin Microb Infect Dis 2001;7(8):417–420. DOI: 10.1046/j.1198-743x.2001.00290.x.
  29. Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 2005;18(2):247–263. DOI: 10.1128/CMR.18.2.247-263.2005.
  30. Hundsberger T, Braun V, Weidmann M, et al. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 1997;244(3):735–742. DOI: 10.1111/j.1432-1033.1997.t01-1-00735.x.
  31. Moncrief JS, Barroso LA, Wilkins TD. Positive regulation of Clostridium difficile toxins. Infect Immun 1997;65(3):1105–1108. DOI: 10.1128/IAI.65.3.1105-1108.1997.
  32. Rupnik M, Dupuy B, Fairweather NF, et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol 2005;54(Pt 2):113–117. DOI: 10.1099/jmm.0.45810-0.
  33. Tan KS, Wee BY, Song KP. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 2001;50(7):613–619. DOI: 10.1099/0022-1317-50-7-613.
  34. Olling A, Seehase S, Minton NP, et al. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. Microb Pathog 2012;52(1):92–100. DOI: 10.1016/j.micpath.2011.10.009.
  35. Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 2002;40(9):3470–3475. DOI: 10.1128/JCM.40.9.3470-3475.2002.
  36. Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005;366(9491): 1079–1084. DOI: 10.1016/S0140-6736(05)67420-X.
  37. MacCannell DR, Louie TJ, Gregson DB, et al. Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 2006;44(6):2147–2152. DOI: 10.1128/JCM.02563-05.
  38. Pepin J, Alary ME, Valiquette L, et al. Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin Infect Dis 2005;40(11):1591–1597. DOI: 10.1086/430315.
  39. Fawley WN, Underwood S, Freeman J, et al. Efficacy of hospital cleaning agents and germicides against epidemic Clostridium difficile strains. Infect Control Hosp Epidemiol 2007;28(8):920–925. DOI: 10.1086/519201.
  40. Murray R, Boyd D, Levett PN, et al. Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A. BMC Infect Dis 2009;9:103. Available from: https://doi.org/10.1186/1471-2334-9-103.
  41. Verdoorn BP, Orenstein R, Rosenblatt JE, et al. High prevalence of tcdC deletion-carrying Clostridium difficile and lack of association with disease severity. Diagn Microbiol Infect Dis 2010;66(1):24–28. DOI: 10.1016/j.diagmicrobio.2009.08.015.
  42. Goldenberg SD, French GL. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile. J Infect 62(5):355–362. DOI: 10.1016/j.jinf.2011.03.001.
  43. Just I, Selzr J, Wilm M, et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 1995;375(6531):500–503. DOI: 10.1038/375500a0.
  44. Pothoulakis C, LaMont JT. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am J Physiol Gastrointest Liver Physiol 2001;280(5):G178–G183. DOI: 10.1152/ajpgi.2001.280.5.G922.
  45. Brito GA, Fujji J, Carneiro-Filho BA, et al. Mechanism of Clostridium difficile toxin A-induced apoptosis in T84 cells. J Infect Dis 2002;186(10):1438–1447. DOI: 10.1086/344729.
  46. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009;7(7):526–536. DOI: 10.1038/nrmicro2164.
  47. McVey DC, Vigna SR. The capsaicin VR1 receptor mediates substance P release in toxin A-induced enteritis in rats. Peptides 2001;22(9): 1439–1446. DOI: 10.1016/s0196-9781(01)00463-6.
  48. Linevsky JK, Pothoulakis C, Keates S, et al. IL-8 release and neutrophil activation by Clostridium difficile toxin-exposed human monocytes. Am J Physiol 1997;273(6):G1333–G1340. DOI: 10.1152/ajpgi.1997.273.6.G1333.
  49. Rupnik M, Janezica S. An update on Clostridium difficile Toxinotyping. J Clin Microbiol 2016;54(1):13–18. DOI: 10.1128/JCM.02083-15.
  50. Singh M, Vaishnavi C, Kochhar R, et al. Toxigenic Clostridium difficile isolates from clinically significant diarrhoea in patients from a tertiary care centre. Indian J Med Res 2017;145(6):840–846. DOI: 10.4103/ijmr.IJMR_192_16.
  51. Singh M, Vaishnavi C, Mahmood S, et al. Toxinotyping and sequencing of Clostridium difficile isolates from patients in a tertiary care hospital of northern India. Front Med 2017;4:33. DOI: 10.3389/fmed.2017.00033.
  52. Popoff MR, Rubin EJ, Gill DM, et al. Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 1988;56(9):2299–2306. DOI: 10.1128/iai.56.9.2299-2306.1988.
  53. Rupnik M, Grabnar M, Geric B. Binary toxin producing Clostridium difficile strains. Anaerobe 2003;9(6):289–294. DOI: 10.1016/j.anaerobe.2003.09.002.
  54. Stubbs SL, Rupnik M, Gilbert M, et al. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 2000;186(2):307–312. DOI: 10.1111/j.1574-6968.2000.tb09122.x.
  55. Geric B, Carman RJ, Rupnik M, et al. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis 2006;193(8): 1143–1150. DOI: 10.1086/501368.
  56. Perelle S, Gibert M, Bourlioux P, et al. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 1997;65(4):1402–1407. DOI: 10.1128/iai.65.4. 1402-1407.1997.
  57. Schwan C, Stecher B, Tzivelekidis T, et al. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 2009;5(10):e1000626. DOI: 10.1371/journal.ppat.1000626.
  58. Bacci S, Mølbak K, Kjeldsen MK, et al. Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis 2011;17(6): 976–982. DOI: 10.3201/eid/1706.101483.
  59. Xu X, Godoy-Ruiz R, Adipietro KA, et al. Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly. PNAS 2020;117(2):1049–1058. DOI: 10.1073/pnas.1919490117.
  60. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000;69(1):183–215. DOI: 10.1146/annurev.biochem.69.1.183.
  61. Carter GP, Lyras D, Allen DL, et al. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol 2007;189(20):7290–7301. DOI: 10.1128/JB.00731-07.
  62. Barth H, Aktories K, Popoff MR, et al. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004;68(3):373–402. DOI: 10.1128/MMBR.68.3.373-402.2004.
  63. Nagahama M, Umezaki M, Tashiro R, et al. Intracellular trafficking of Clostridium perfringens iota-toxin b. Infect Immun 2012;80(10): 3410–3416. DOI: 10.1128/IAI.00483-12.
  64. Kaiser E, Kroll C, Ernst K, et al. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect Immun 2011;79(10):3913–3921. DOI: 10.1128/IAI.05372-11.
  65. Gülke I, Pfeifer G, Liese J, et al. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 2001;69(10):6004–6011. DOI: 10.1128/IAI.69.10.6004-6011.2001.
  66. Seddon SV, Hemingway I, Borriello SP. Hydrolytic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model. J Med Microbiol 1990;31(3):169–174. DOI: 10.1099/00222615-31-3-169.
  67. Samie A, Obi CL, Franasiak J, et al. PCR detection of Clostridium difficile triose phosphate isomerase (tpi), toxin A (tcdA), toxin B (tcdB), binary toxin (cdtA, cdtB), and tcdC genes in Vhembe District, South Africa. Am J Trop Med Hyg 2008;78(4):577–585. PMID: 18385352.
  68. Karjalainen T, Saumier N, Barc MC, et al. Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative to serotyping. J Clin Microbiol 2002;40(7):2452–2458. DOI: 10.1128/JCM.40.7.2452-2458.2002.
  69. Fagan RP, Albesa-Jove D, Qazi O, et al. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol 2009;71(5):1308–1322. DOI: 10.1111/j.1365-2958. 2009.06603.x.
  70. Cerquetti M, Molinari A, Sebastianelli A, et al. Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 2000;28(6):363–372. DOI: 10.1006/mpat.2000.0356.
  71. Calabi E, Fairweather N. Patterns of sequence conservation in the S-layer proteins and related sequences in Clostridium difficile. J Bacteriol 2002;184(14):3886–3897. DOI: 10.1128/JB.184.14.3886-3897.2002.
  72. Calabi E, Ward S, Wren B, et al. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol Microbiol 2001;40(5):1187–1199. DOI: 10.1046/j.1365-2958.2001.02461.x.
  73. Wright A, Drudy D, Kyne L, et al. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol 2008;57(Pt 6):750–766. DOI: 10.1099/jmm.0.47532-0.
  74. Emerson JE, Reynolds CB, Fagan RP, et al. A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol Microbiol 2009;74(3):541–556. DOI: 10.1111/j.1365-2958.2009.06812.x.
  75. Tasteyre A, Barc MC, Karjalainen T, et al. A Clostridium difficile gene encoding flagellin. Microbiol 2000;146(Pt 4):957–966. DOI: 10.1099/00221287-146-4-957.
  76. Ramos HC, Rumbo M, Sirard JC. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol 2004;12(11):509–517. DOI: 10.1016/j.tim.2004.09.002.
  77. Delmée M, Avesani V, Delferriere N, et al. Characterization of flagella of Clostridium difficile and their role in serogrouping reactions. J Clin Microbiol 1990;28(10):2210–2214. DOI: 10.1128/jcm.28.10.2210-2214.1990.
  78. Twine SM, Reid CW, Aubry A, et al. Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 2009;191(22):7050–7062. DOI: 10.1128/JB.00861-09.
  79. Tasteyre A, Karjalainen T, Avesani V, et al. Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol 2000;38(9):3179–3186. DOI: 10.1128/JCM.38.9.3179-3186.2000.
  80. Tasteyre A, Barc MC, Collignon A, et al. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 2001;69(12):7937–7940. DOI: 10.1128/IAI.69.12.7937-7940.2001.
  81. Tasteyre A, Karjalainen T, Avesani V, et al. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. J Clin Microbiol 2001;39(3):1178–1183. DOI: 10.1128/JCM.39.3.1178-1183.2001.
  82. Winstanley C, Morgan JAW. The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. Microbiology-Sgm 1997;143(Pt 10):3071–3084. DOI: 10.1099/00221287-143-10-3071.
  83. Borriello SP, Davies HA, Kamiya S, et al. Virulence factors of Clostridium difficile. Rev Infect Dis 1990;12 Suppl 2:S185–S191. DOI: 10.1152/ajpgi.00166.2019.
  84. Borriello SP, Welch AR, Barclay FE, et al. Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J Med Microbiol 1988;25(3):191–196. DOI: 10.1099/00222615-25-3-191.
  85. Taha S, Johansson O, Rivera Jonsson S, et al. Toxin production by and adhesive properties of Clostridium difficile isolated from humans and horses with antibiotic-associated diarrhea. Comp Immunol Microbiol Infect Dis 2007;30(3):163–174. DOI: 10.1016/j.cimid.2006.11.006.
  86. Davies HA, Borriello SP. Detection of capsule in strains of Clostridium difficile of varying virulence and toxigenicity. Microb Pathog 1990;9(2):141–146. DOI: 10.1016/0882-4010(90)90088-8.
  87. Tijerina-Rodrıguez L, Villarreal-Treviño L, Morfın-Otero R, et al. Virulence factors of Clostridioides (Clostridium) difficile linked to recurrent infections. Can J Infect Dis Med Microbiol 2019;2019:7127850. DOI: 10.1155/2019/7127850.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.