Journal of Gastrointestinal Infections

Register      Login

VOLUME 11 , ISSUE 1 ( January-December, 2021 ) > List of Articles

REVIEW ARTICLE

New Insights into Molecular Diagnostics for Common Gastrointestinal Infections

Varsha Gupta, Meenakshi Singh, Aditi, Ritu Garg

Keywords : Culture, Diarrhea, Enteropathogens, Gastrointestinal infections, Real-time PCR

Citation Information : Gupta V, Singh M, A, Garg R. New Insights into Molecular Diagnostics for Common Gastrointestinal Infections. J Gastrointest Infect 2021; 11 (1):15-23.

DOI: 10.5005/jp-journals-10068-3044

License: CC BY-NC 4.0

Published Online: 18-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Gastrointestinal (GI) infections are a major health problem all over the world, causing an increase in hospitalization, morbidity, and mortality. The etiological agents of infectious gastroenteritis are viruses, bacteria, and parasites. A precise identification of GI pathogens is crucial for proper treatment and/or isolation, management, and further investigations like designing specific prevention modalities, vaccination strategies, and empiric treatment regimens to prevent the spread of the infectious agents. Routinely, the laboratory diagnosis of GI infections depends on microscopy, culture, and antigen detection. The drawbacks of conventional method are its low sensitivity and 3–5 days of turnaround time in the finalization of report. Quick turnaround time is of paramount value in diagnosis, clinical management, and infection control. From the last decade, molecular-based diagnostic tools have emerged for GI infections in the microbiological laboratory analyses. Culture-independent diagnostic tests typically involve nucleic acid amplification of the genetic material of several bacteria, viruses, and parasites simultaneously. Even whole-genome next-generation sequencing is important for symptomatic patients that remain negative by both routine and multiplex PCR-based diagnostic methods. Therefore, the use of proficient methods for pathogen detection is necessary to ensure prompt turnaround time. This review includes various conventional and molecular tools in identifying various enteropathogens and also analyzes the advantages and drawbacks of all methods.


HTML PDF Share
  1. da Cruz Gouveia MA, Lins MTC, da Silva GAP. Acute diarrhea with blood: diagnosis and drug treatment. J Pediatr (Rio J) 2020;96(1): 20. DOI: 10.1016/j.jped.2019.08.006.
  2. Nemeth V, Pfleghaar N. Diarrhea. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
  3. Tille PM. Bailey and Scott's diagnostic microbiology. 13th ed. Elsevier Publishers; 2013. p. 947.
  4. Schiller LR. Chronic diarrhea evaluation in the elderly: IBS or something else? Curr Gastroenterol Rep 2019;21(9):45. DOI: 10.1007/s11894-019-0714-5.
  5. DuPont HL. Persistent diarrhea: a clinical review. JAMA 2016;315(24):2712–2723. DOI: 10.1001/jama.2016.7833.
  6. Lucado J, Mohamoud S, Zhao L, et al. Infectious enteritis and foodborne illness in the United States, 2010 statistical brief #150. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. Rockville (MD): Agency for Health Care Policy and Research (US); 2013.
  7. Tatte VS, Gopalkrishna V. Detection of different enteric viruses in children with diarrheal disease: evidence of the high frequency of mixed infections. Access Microbiol 2019;1(2):e000010. DOI: 10.1099/acmi.0.000010.
  8. Sattar SBA, Singh S. Bacterial gastroenteritis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
  9. Garcia LS, Arrowood M, Kokoskin E, et al. Practical guidance for clinical microbiology laboratories: laboratory diagnosis of parasites from the gastrointestinal tract. Clin Microbiol Rev 2018;31(1):e00025–e00017. DOI: 10.1128/CMR.00025-17.
  10. Amjad M. An overview of the molecular methods in the diagnosis of gastrointestinal infectious diseases. Int J Microbiol 2020;81: 1–13. DOI: 10.1155/2020/8135724.
  11. Giuliano C, Patel CR, Kale-Pradhan PB. A guide to bacterial culture identification and results interpretation. P T 2019;44(4):192–200. PMID: 30930604; PMCID: PMC6428495.
  12. Balsalobre-Arenas L, Alarcón-Cavero T. Rapid diagnosis of gastrointestinal tract infections due to parasites, viruses, and bacteria. Enferm Infecc Microbiol Clin 2017;35(6):367–376. DOI: 10.1016/j.eimc.2017.01.002.
  13. Lee HM, Lee S, Lee BI, et al. Clinical significance of fecal lactoferrin and multiplex polymerase chain reaction in patients with acute diarrhea. Gut Liver 2015;9(5):636–640. DOI: 10.5009/gnl14106.
  14. Barreda-García S, Miranda-Castro R, de-Los-Santos-Álvarez N, et al. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal Bioanal Chem 2018;410(3):679–693. DOI: 10.1007/s00216-017-0620-3.
  15. Buchan BW, Olson WJ, Pezewski M, et al. Clinical evaluation of a real-time PCR assay for identification of Salmonella, Shigella, Campylobacter (Campylobacter jejuni and C. coli), and Shiga toxin-producing Escherichia coli isolates in stool specimens. J Clin Microbiol 2013;51(12):4001–4007. DOI: 10.1128/JCM.02056-13.
  16. Wohlwend N, Tiermann S, Risch L, et al. Evaluation of a multiplex real-time PCR assay for detecting major bacterial enteric pathogens in fecal specimens: intestinal inflammation and bacterial load are correlated in campylobacter infections. J Clin Microbiol 2016;54(9):2262–2266. DOI: 10.1128/JCM.00558-16.
  17. Sobczyk J, Jain S, Sun X, et al. Comparison of multiplex gastrointestinal pathogen panel and conventional stool testing for evaluation of patients with HIV infection. Open Forum Infect Dis 2020;7(1):ofz547. DOI: 10.1093/ofid/ofz547.
  18. Paitan Y, Roll TM, Adler A. Comparative performance study of six commercial molecular assays for rapid detection of toxigenic Clostridium difficile. Clin Microbiol Infect 2017;23(8):567–572. DOI: 10.1016/j.cmi.2017.02.016.
  19. Monot M, Eckert C, Lemire A, et al. Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci Rep 2015;5:15023. DOI: 10.1038/srep15023.
  20. Yakob L, Riley TV, Paterson DL, et al. Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Sci Rep 2015;5:12666. DOI: 10.1038/srep12666.
  21. McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018;66(7):e1–e48. DOI: 10.1093/cid/cix1085.
  22. Jensen MBF, Olsen KEP, Nielsen XC, et al. Diagnosis of Clostridium difficile: real-time PCR detection of toxin genes in faecal samples is more sensitive compared to toxigenic culture. Eur J Clin Microbiol Infect Dis 2015;34(4):727–736. DOI: 10.1007/s10096-014-2284-7.
  23. Robilotti E, Deresinski S, Pinsky BA. Norovirus. Clin Microbiol Rev 2015;28(1):134–164. DOI: 10.1128/CMR.00075-14.
  24. Yan Y, Wang H-H, Gao L, et al. A one-step multiplex real-time RT-PCR assay for rapid and simultaneous detection of human norovirus genogroup I, II and IV. J Virol Methods 2013;189(2):277–282. DOI: 10.1016/j.jviromet.2013.02.004.
  25. Ramanan P, Bryson AL, Binnicker MJ, et al. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev 2018;31(1): 1–28. DOI: 10.1128/CMR.00024-17.
  26. Huang RSP, Johnson CL, Pritchard L, et al. Performance of the Verigene ® enteric pathogens test, Biofire FilmArray™ gastrointestinal panel and LuminexxTAG® gastrointestinal pathogen panel for detection of common enteric pathogens. Diagn Microbiol Infect Dis 2016;86(4):336–339. DOI: 10.1016/j.diagmicrobio.2016.09.013.
  27. Buss SN, Leber A, Chapin K, et al. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol 2015;53(3):915–925. DOI: 10.1128/JCM.02674-14.
  28. Wessels E, Rusman LG, van Bussel MJAWM, et al. Added value of multiplex luminex gastrointestinal pathogen panel (xTAG GPP) testing in the diagnosis of infectious gastroenteritis. Clin Microbiol Infect 2014;20(3):O182–O187. DOI: 10.1111/1469-0691.12364.
  29. Claas EC. Performance of the xTAG gastrointestinal pathogen panel, a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. J Microbiol Biotechnol 2013;23(7):1041–1045. DOI: 10.4014/jmb.1212.12042.
  30. Navidad JF, Griswold DJ, Gradus MS, et al. Evaluation of LuminexxTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. J Clin Microbiol 2013;51(9):3018–3024. DOI: 10.1128/JCM.00896-13.
  31. Yoo J, Park J, Lee HK, et al. Comparative evaluation of Seegene Allplex gastrointestinal, Luminex xTAG gastrointestinal pathogen panel, and BD MAX enteric assays for detection of gastrointestinal pathogens in clinical stool specimens. Arch Pathol Lab Med 2019;143(8):999–1005. DOI: 10.5858/arpa.2018-0002-OA.
  32. Knabl L, Grutsch I, Orth-Höller D. Comparison of the BD MAX enteric bacterial panel assay with conventional diagnostic procedures in diarrheal stool samples. Eur J Clin Microbiol Infect Dis 2016;35(1): 131–136. DOI: 10.1007/s10096-015-2517-4.
  33. DeBurger B, Hanna S, Powell EA, et al. Utilizing BD MAX enteric bacterial panel to detect stool pathogens from rectal swabs. BMC Clin Pathol 2017;17:7. DOI: 10.1186/s12907-017-0043-2.
  34. Molling P, Nilsson P, Ennefors T, et al. Evaluation of the BD max enteric parasite panel for clinical diagnostics. J Clin Microbiol 2016;54(2): 443–444. DOI: 10.1128/JCM.02100-15.
  35. Stokes W, Simner PJ, Mortensen J, et al. Multicenter clinical validation of the molecular BD max enteric viral panel for detection of enteric pathogens. J Clin Microbiol 2019;57(9):e00306–e00319. DOI: 10.1128/JCM.00306-19.
  36. Amrud K, Slinger R, Sant N, et al. A comparison of the Allplex™ bacterial and viral assays to conventional methods for detection of gastroenteritis agents. BMC Res Notes 2018;11(1):514. DOI: 10.1186/s13104-018-3645-6.
  37. Coupland LJ, Mcelarney I, Meader E, et al. Simultaneous detection of viral and bacterial enteric pathogens using the Seeplex® Diarrhea ACE detection system. Epidemiol Infect 2013;141(10):2111–2121. DOI: 10.1017/S0950268812002622.
  38. Higgins RR, Beniprashad M, Cardona M, et al. Evaluation and verification of the Seeplex Diarrhea-V ACE assay for simultaneous detection of adenovirus, rotavirus, and norovirus genogroups I and II in clinical stool specimens. J Clin Microbiol 2011;49(9):3154–3162. DOI: 10.1128/JCM.00599-11.
  39. Onori M, Coltella L, Mancinelli L, et al. Evaluation of a multiplex PCR assay for simultaneous detection of bacterial and viral enteropathogens in stool samples of paediatric patients. Diagn Microbiol Infect Dis 2014;79(2):149–154. DOI: 10.1016/j.diagmicrobio.2014.02.004.
  40. Zboromyrska Y, Vila J. Advanced PCR-based molecular diagnosis of gastrointestinal infections: challenges and opportunities. Expert Rev Mol Diagn 2016;16(6):631–640. DOI: 10.1586/14737159.2016.1167599.
  41. Valledor S, Valledor I, Gil-Rodríguez MC, et al. Comparison of several Real-Time PCR Kits versus a culture-dependent algorithm to identify enteropathogens in stool samples. Sci Rep 2020;10:4301. DOI: 10.1038/s41598-020-61202-z.
  42. Biswas JS, Al-Ali A, Rajput P, et al. A parallel diagnostic accuracy study of three molecular panels for the detection of bacterial gastroenteritis. Eur J Clin Microbiol Infect Dis 2014;33(11):2075–2081. DOI: 10.1007/s10096-014-2177-9.
  43. Hannet I, Engsbro AL, Pareja J, et al. Multicenter evaluation of the new QIAstat Gastrointestinal Panel for the rapid syndromic testing of acute gastroenteritis. Eur J Clin Microbiol Infect Dis 2019;38(11): 2103–2112. DOI: 10.1007/s10096-019-03646-4.
  44. Stark D, Garcia LS, Barratt JLN, et al. Description of Dientamoeba fragilis cyst and precystic forms from human samples. J Clin Microbiol 2014;52(7):2680–2683. DOI: 10.1128/JCM.00813-14.
  45. Besser JM, Carleton HA, Trees E, et al. Interpretation of whole-genome sequencing for enteric disease surveillance and outbreak investigation. Foodborne Pathog Dis 2019;16(7):504–512. DOI: 10.1089/fpd.2019.2650.
  46. Franco-Duarte R, Černáková L, Kadam S, et al. Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms 2019;7(5):130. DOI: 10.3390/microorganisms7050130.
  47. Chin CS, Sorenson J, Harris JB, et al. The origin of the Haitian cholera outbreak strain. N Engl J Med 2011;364(1):33–42. DOI: 10.1056/NEJMoa1012928.
  48. Joensen KG, Engsbro AL, Lukjancenko O, et al. Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease. Eur J Clin Microbiol Infect Dis 2017;36(7):1325–1338. DOI: 10.1007/s10096-017-2947-2.
  49. Wang S, Hong W, Dong S, et al. Genome engineering of Clostridium difficile using the CRISPR-Cas9 system. Clin Microbio Infect 2018;24(10):1095–1099. DOI: 10.1016/j.cmi.2018.03.026.
  50. Vinayak S, Pawlowic MC, Sateriale A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 2015;523(7561):447–480. DOI: 10.1038/nature14651.
  51. Beverley SM. CRISPR for Cryptosporidium. Nature 2015;523(7561): 413–414. DOI: 10.1038/nature14636.
  52. Imdad A, Retzer F, Thomas LS, et al. Impact of culture independent diagnostic testing on recovery of enteric bacterial infections. Clin Infect Dis 2018;66(12):1892–1898. DOI: 10.1093/cid/cix1128.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.