Journal of Gastrointestinal Infections

Register      Login

VOLUME 11 , ISSUE 1 ( January-December, 2021 ) > List of Articles


Biofilm and Chronic Typhoid Carriers with Special Reference to Bacteriophage Therapy

Virendra Bahadur Yadav, Gopal Nath, Sudhir Kumar Singh

Keywords : Antibiotics, Bacteriophage therapy, Biofilm, Chronic carrier, Typhoid fever

Citation Information : Yadav VB, Nath G, Singh SK. Biofilm and Chronic Typhoid Carriers with Special Reference to Bacteriophage Therapy. J Gastrointest Infect 2021; 11 (1):36-41.

DOI: 10.5005/jp-journals-10068-3053

License: CC BY-NC 4.0

Published Online: 18-01-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Salmonella enterica serovar Typhi is a human-restricted pathogen and the primary etiologic agent of typhoid fever with an incidence of 21 million cases each year, resulting in 200,000 deaths annually. About 3–5% of the individuals with an acute clinical or subclinical infection ultimately develop a chronic asymptomatic carrier state. These new chronic carriers are being added to the existing pool every year. This chronic carriage state not only serves as a reservoir for further spread of the disease via bacterial shedding in feces but is also being reported to be associated with malignant transformations in the biliary system. The acute and chronic carrier states are also becoming challenging to resolve with antibiotics due to the emergence of multiple drug-resistant strains. Moreover, biofilm formation is another hindrance in eliminating the infection. It is crucial to understand the development of each of these states to design and test targeted approaches to resolve the more recalcitrant chronic carriage. Bacteriophage therapy is emerging as one of the potential alternatives to deal with acute and chronic infection associated with biofilm formation. In this review, we have discussed the natural process of biofilm formation along with the intelligent role of bacteriophages to resolve such complicated infections, particularly in relation to typhoid.

  1. Planson AG, Sauveplane V, Dervyn E, et al. Bacterial growth physiology and RNA metabolism. Biochim Biophys Acta Gene Regul Mech 2020;1863(5):194502. DOI: 10.1016/j.bbagrm.2020.194502.
  2. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2004;2(2):95–108. DOI: 10.1038/nrmicro821.
  3. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284(5418):1318–1322. DOI: 10.1126/science.284.5418.1318.
  4. Burmølle M, Thomsen TR, Fazli M, et al. Biofilms in chronic infections–a matter of opportunity–monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 2010;59(3):324–336. DOI: 10.1111/j.1574-695X.2010.00714.x.
  5. Yin W, Wang Y, Liu L, et al. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 2019;20(14):3423. DOI: 10.3390/ijms20143423.
  6. Høiby N. A short history of microbial biofilms and biofilm infections. APMIS 2017;125(4):272–275. DOI: 10.1111/apm.12686.
  7. Sun F, Qu F, Ling Y, et al. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 2013;8(7):877–886. DOI: 10.2217/fmb.13.58.
  8. Hamilos DL. Biofilm formations in pediatric respiratory tract infection. Curr Infect Dis Rep 2019;21(2):6. DOI: 10.1007/s11908-019-0658-9.
  9. Beloin C, Fernández-Hidalgo N, Lebeaux D. Understanding biofilm formation in intravascular device-related infections. Intensive Care Med 2017;43(3):443–446. DOI: 10.1007/s00134-016-4480-7.
  10. Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 2010;16(43):5395–5404. DOI: 10.3748/wjg.v16.i43.5395.
  11. Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 2015;17(6):763–774. DOI: 10.1016/j.chom.2015.05.002.
  12. Mowat E, Williams C, Jones B, et al. The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med Mycol 2009;47(Suppl 1):S120–S126. DOI: 10.1080/13693780802238834.
  13. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010;8(9):623–633. DOI: 10.1038/nrmicro2415.
  14. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007;446(7139):1023–1029. DOI: 10.1038/nature05816.
  15. Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol 2002;92 Suppl:98S. PMID: 12000619.
  16. Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012;7(9):1061–1072. DOI: 10.2217/fmb.12.76.
  17. Cramton SE, Gerke C, Schnell NF, et al. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999;67(10):5427. DOI: 10.1128/IAI.67.10.5427-5433.1999.
  18. Said J, Walker M, Parsons D, et al. Development of a flow system for studying biofilm formation on medical devices with microcalorimetry. Methods 2015;76:35–40. DOI: 10.1016/j.ymeth.2014.12.002.
  19. Francolini I, Donelli G, Vuotto C, et al. Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis 2014;70(3):401. DOI: 10.1111/2049-632X.12155.
  20. Taresco V, Crisante F, Francolini I, et al. Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 2015;22:131–140. DOI: 10.1016/j.actbio.2015.04.023.
  21. Shen Y, Köller T, Kreikemeyer B, et al. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother 2013;68(8):1818. DOI: 10.1093/jac/dkt104.
  22. Lauderdale KJ, Boles BR, Cheung AL, et al. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 2009;77(4):1623. DOI: 10.1128/IAI.01036-08.
  23. Davison WM, Pitts B, Stewart PS. Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 2010;54(7):2920. DOI: 10.1128/AAC.01734-09.
  24. Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta Biomembranes 2009;1788(8):1564. DOI: 10.1016/j.bbamem.2008.10.025.
  25. Jiang P, Li J, Han F, et al. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 2011;6(4):e18514. DOI: 10.1371/journal.pone.0018514.
  26. Amalaradjou MAR, Kumar V. Antibiofilm effect of octenidine hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens 2014;3(2):404. DOI: 10.3390/pathogens3020404.
  27. Buchwald DS, Blaser MJ. A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev Infect Dis 1984;6(3):345. DOI: 10.1093/clinids/6.3.345.
  28. Nath G, Singh YK, Kumar K, et al. Association of carcinoma of the gallbladder with typhoid carriage in a typhoid endemic area using nested PCR. J Infect Dev Ctries 2008;2(4):302. DOI: 10.3855/jidc.226.
  29. Crawford RW, Rosales-Reyes R, Ramírez-Aguilar MDLL, et al. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci U S A 2010;107(9):4353. DOI: 10.1073/pnas.1000862107.
  30. González JF, Alberts H, Lee J, et al. Biofilm formation protects salmonella from the antibiotic ciprofloxacin in vitro and in vivo in the mouse model of chronic carriage. Sci Rep 2018;8(1):222. DOI: 10.1038/s41598-017-18516-2.
  31. Ong SY, Pratap CB, Wan X, et al. Complete genome sequence of Salmonella enterica subsp. Enterica serovar typhi P-stx-12. J Bacteriol 2012;194(8):2115–2116. DOI: 10.1128/JB.00121-12.
  32. Tripathi MK, Pratap CB, Dixit VK, et al. Ulcerative colitis and its association with Salmonella species. Interdiscip Perspect Infect Dis 2016;2016:5854285. DOI: 10.1155/2016/5854285.
  33. Patel DR, Bhartiya SK, Kumar R, et al. Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study. Int J Low Extrem Wounds 2021;20(1):37. DOI: 10.1177/1534734619881076.
  34. Simmons M, Drescher K, Nadell CD, et al. Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J 2018;12(2):531. DOI: 10.1038/ismej.2017.190.
  35. Scanlan PD, Hall AR, Blackshields G, et al. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol 2015;32(6):1425. DOI: 10.1093/molbev/msv032.
  36. Pires DP, Melo LDR, Vilas Boas D, et al. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 2017;39:48. DOI: 10.1016/j.mib.2017.09.004.
  37. Cornelissen A, Ceyssens PJ, T'Syen J, et al. The t7-related pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS One 2011;6(4):e18597. DOI: 10.1371/journal.pone.0018597.
  38. Waters EM, Neill DR, Kaman B, et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 2017;72(7):666. DOI: 10.1136/thoraxjnl-2016-209265.
  39. Örmälä A-M, Jalasvuori M. Phage therapy: should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 2013;3(1):e24219. DOI: 10.4161/bact.24219.
  40. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 2007;104(27):11197. DOI: 10.1073/pnas.0704624104.
  41. Tinoco JM, Buttaro B, Zhang H, et al. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol 2016;71:80. DOI: 10.1016/j.archoralbio.2016.07.001.
  42. Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 2015;112(23):7267. DOI: 10.1073/pnas.1500107112.
  43. Coulter LB, McLean RJC, Rohde RE, et al. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 2014;6(10):3778. DOI: 10.3390/v6103778.
  44. Tagliaferri TL, Jansen M, Horz HP. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 2019;9:22. DOI: 10.3389/fcimb.2019.00022.
  45. Latka A, Maciejewska B, Majkowska-Skrobek G, et al. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017;101(8):3103–3119. DOI: 10.1007/s00253-017-8224-6.
  46. Briers Y, Walmagh M, Van Puyenbroeck V, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio 2014;5(4):e01379-14. DOI: 10.1128/mBio.01379-14.
  47. Pires DP, Oliveira H, Melo LDR, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 2016;100(5):2141–2151. DOI: 10.1007/s00253-015-7247-0.
  48. Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 2018;102(6):2563–2581. DOI: 10.1007/s00253-018-8811-1.
  49. Olsen NMC, Thiran E, Hasler T, et al. Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses 2018;10(8):438. DOI: 10.3390/v10080438.
  50. Pinto G, Silva MD, Peddey M, et al. The role of bacteriophages in periodontal health and disease. Future Microbiol 2016;11:1359. DOI: 10.2217/fmb-2016-0081.
  51. Gupta P, Singh HS, Shukla VK, et al. Bacteriophage therapy of chronic nonhealing wound: clinical study. Int J Low Extrem Wounds 2019;18(2):171. DOI: 10.1177/1534734619835115.
  52. Broxmeyer L, Sosnowska D, Miltner E, et al. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent Mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis 2002;186(8):1155. DOI: 10.1086/343812.
  53. Mattila S, Ruotsalainen P, Jalasvuori M. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 2015;6(11). DOI: 10.3389/fmicb.2015.01271.
  54. Colomer-Lluch M, Imamovic L, Jofre J, et al. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother 2011;55(10):4908. DOI: 10.1128/AAC.00535-11.
  55. Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev 2019;32(2);e00066. DOI: 10.1128/CMR.00066-18.
  56. McCallin S, Sarker SA, Sultana S, et al. Metagenome analysis of Russian and Georgian Pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ Microbiol 2018;20(9):3278. DOI: 10.1111/1462-2920.14310.
  57. Yehl K, Lemire S, Yang AC, et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 2019;179(2):459. DOI: 10.1016/j.cell.2019.09.015.
  58. Kim KP, Cha JD, Jang EH, et al. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type I immune response. Microb Biotechnol 2008;1(3):247. DOI: 10.1111/j.1751-7915.2008.00028.x.
  59. Speck P, Smithyman A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett 2015;363(3):fnv242. DOI: 10.1093/femsle/fnv242.
  60. Garenne D, Noireaux V. Cell-free transcription–translation: engineering biology from the nanometer to the millimeter scale. Curr Opin Biotechnol 2019;58:19. DOI: 10.1016/j.copbio.2018.10.007.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.